

1. DATOS GENERALES DE LA UNIDAD DE APRENDIZAJE (UA) O ASIGNATURA							
Nombre de	Nombre de la Unidad de Aprendizaje (UA) o Asignatura Clave de la UA						
		Sistemas robóticos II			I9912		
Modalidad de la UA		Tipo de UA	Área de	formación	Valor en créditos		
Presencial		Curso	Básica	particular	8		
UA de pre-requisito		UA simultá	áneo UA r		osteriores		
N/A		Sistemas intelige	religentes IV N/A		N/A		
Horas totales de teoría		Horas totales de	s de práctica Horas totales del curso				
48		32	32 80		80		
Licenciatura(s) en d	que se in	nparte	Módulo al que pertenece				
Ingeniería Ro	Ingeniería Robótica			Sistemas inteligentes	5		
Departamento			Academia a la que pertenece				
Ciencias Computacionales			Robótica				
Elaboró			Fecha de elaboración o revisión				
Michel Emanuel López Franco				05/07/2018			

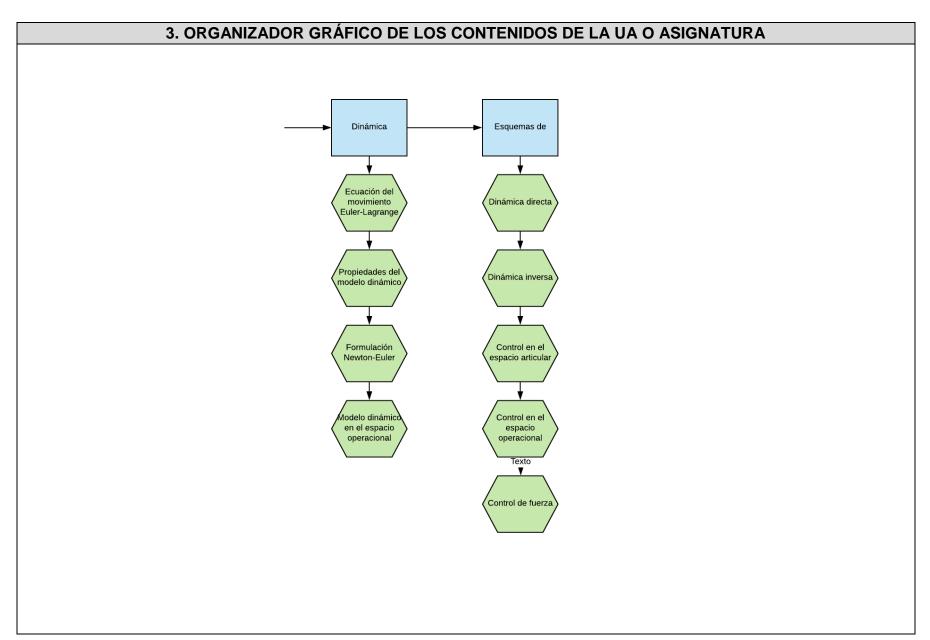
2. DESCRIPCIÓN DE LA UA O ASIGNATURA

Presentación

El curso versa sobre el modelado dinámico de los sistemas robóticos. Al inicio del curso se comprenden conceptos básicos de física, posteriormente se emplean métodos para obtener el modelado dinámico de un robot. El modelado dinámico permite al alumno simular el robot, al igual que el diseño de controladores que brinden autonomía al robot durante la realización de una tarea.

Relación con el perfil						
Modular	Relacion co	•				
Atender una problemática donde un sistema robót mediante el empleo de metodologías para el aná cinemático con la finalidad de implementar la técnica e resolución del problema.	alisis y diseño del modelo de control apropiada para la mpetencias a desarrollo	desempeñarse en el control de procesos industriales automatizados, la				
Transversales	Genér	ricas	Profesionales			
Capacidad de abstracción, análisis y síntesis Identificar y resolver problemas Capacidad de investigación Capacidad de aprender y actualizarse Capacidad de aplicar conocimientos en la práctica Trabajo autónomo	Diseñar y analizar sistemas robóticos a partir del estudio dinámico de los mismos.		Habilidad para el diseño de sistemas robóticos en procesos de automatización industrial, aplicando metodologías para el análisis dinámico del sistema.			
	Saberes involucrados e	en la UA o Asignatura	a			
Saber (conocimientos)	Saber hacer (habilidades)	Saber ser (actitudes y valores)			
Identifica las articulaciones de un robot y las fuerzas que intervienen.	Selecciona la técni obtención del mode	ica adecuada para la elo dinámico.	Hábil para el trabajo en equipo y practicar competencias de trabajo colaborativo.			
Comprende el movimiento de un robot como resultado de las fuerzas que actúan en él.	Capacidad para el sistemas robóticos	modelado dinámico de	 Capacidad de abstracción, análisis y síntesis. 			
 Capacidad para el análisis dinámico de un robot. 	 Emplea algoritmos resolución de prob 	•	 Capacidad para resolver problemas con iniciativa, autonomía y creatividad. 			
Pr	oducto Integrador Fina	ıl de la UA o Asignatı	ura			

Título del Producto:


Integración de reporte de proyecto con los resultados obtenidos en las actividades.

Objetivo: Diseño, modelado, simulación y aplicación de un sistema robótico para la solución de una problemática dada.

Descripción:

Compendio de implementaciones funcionales de software de algoritmos de modelado y sus reportes de aplicaciones a resolución de problemas de dinámica que le permitirá comparar y seleccionar el algoritmo que resuelva problemas de dinámica de forma más precisa y/o eficiente. La intención del producto integrador final es de identificar la complejidad computación, el tiempo de procesamiento, capacidad de convergencia, control, modelado, entre otras características.

4. SECUENCIA DEL CURSO POR UNIDADES TEMÁTICAS

Unidad temática 1:

Objetivo de la unidad temática: Aplicar algoritmos matemáticos para resolver problemas dinámicos descritos en el curso.

Introducción: Esta unidad temática permite al estudiante recordar los conceptos básicos de dinámica, las técnicas de Euler-Lagrange de modelado de un robot así como la de Newton-Euler.

Contenido temático	Saberes involucrados	Producto de la unidad temática
	Identifica la problemática de la dinámica ocupando procesos de ingeniería, cómputo y matemáticas.	Reporte de resultados de implementación de ecuación de movimiento Euler- Lagrange y Newton-Euler
1. Dinámica	Utiliza lenguajes de programación para el uso de técnicas de modelado de movimiento.	
1.1 Ecuación de movimiento Euler- Lagrange	Fortalece la abstracción en la solución de problemas.	
1.2 Propiedades del modelo dinámico	Utiliza ecuaciones matemáticas para resolver un problema modelado de movimiento dinámico de un	
1.3 Formulación Newton-Euler	sistema mecánico.	
1.4 Modelo dinámico en el espacio operacional		

Actividades del docente	Actividades del estudiante	Evidencia de la actividad	Recursos y materiales	Tiempo destinado
Exposición	El estudiante atiende el seminario impartido			44
Método de proyectos y seminario Investigación de tópicos y problemas específicos	por el profesor e identifica los alcances y limitaciones de las diferentes técnicas de modelado dinámico Entrega de reporte de resultados de implementación de la dinámica a un robot.			
	implementación de la dinamica a un robot.			

Unidad temática 2:

Objetivo de la unidad temática: Aplicar algoritmos de control para resolver problemas en el espacio articular y operacional, realizar un análisis comparativo de las diferentes técnicas de control descritas en el curso.

Introducción: El controlador busca encontrar la relación existente entre las dinámicas del sistema y la velocidad del extremo operativo del robot.

Contenido temático	Saberes involucrados	Producto de la unidad temática
--------------------	----------------------	--------------------------------

2.	Esquemas	de control

2.1 Dinámica directa y dinámica inversa

2.2 Control en el espacio articular

2.3 Control en el espacio operacional

2.4 Control de fuerza

Identifica la problemática de la dinámica ocupando procesos de ingeniería, cómputo y matemáticas.

Utiliza lenguajes de programación para el uso de técnicas de modelado de movimiento.

Fortalece la abstracción en la solución de problemas.

Utiliza ecuaciones matemáticas para resolver un problema modelado de movimiento dinámico de un sistema mecánico.

Reporte de resultados de implementación de un control un robot.

Actividades del docente	Actividades del estudiante	Evidencia o de la actividad	Recursos y materiales	Tiempo destinado
Exposición	El estudiante atiende el seminario impartido			36
Método de proyectos y seminario	por el profesor y aplica otras técnicas de			
Investigación de tópicos y problemas específicos	cinemática para resolver problemas para diseñar controladores para sistemas dinámicos. Entrega de reporte de resultados de implementación de la cinemática diferencial inversa a un robot.		de lectura, presentación para el aula.	

	,			,
F	LUACION	$V \cap V$		CIONI
υ.	LUACION	I CAL	JITICA	

Requerimientos de acreditación:

Tener por lo menos el 80% de asistencia a clases para obtener calificación aprobatoria en la unidad de aprendizaje. Tener por lo menos 65% de asistencia a clases para obtener calificación aprobatoria en el examen extraordinario.

Criterios generales de evaluación:

Entrega de reportes de actividades y prácticas 40% Entrega de reporte de proyecto 50%

Calificación de la exposición	10%			
	Evidencias o Produ	ictos		
Evidencia o producto	Competencias y saberes involucra	dos	Contenidos temáticos	Ponderación
1. Entrega de reporte de cuestionario sobre la definición e importancia de las ecuaciones de movimiento de Euler-Lagrange y Newton-Euler para la solución de problemas de ingeniería	Expresa ideas a través de un uso correcto lenguaje escrito. Construye una definición de dinámica en robótica y se percata de su importancia pa solución de problemas en la actualidad en industria y en la vida cotidiana en la robótica.	ara la la	1. Dinámica 1.1 Ecuación de movimiento Euler-Lagrange 1.2 Propiedades del modelo dinámico 1.3 Formulación Newton-Euler 1.4 Modelo dinámico en el espacio operacional	15%
2. Entrega de reporte de resultados de implementación de control a un robot.	Expresa ideas a través de un uso correcto de lenguaje escrito. Se percata de los alcances y limitaciones de técnicas de control tradicionales		 Esquemas de control 2.1 Dinámica directa y dinámica inversa 2.2 Control en el espacio articular 2.3 Control en el espacio operacion 2.4 Control de fuerza 	25%
	Producto final			
			Evaluación	
Título: Compendio de implementaciones reportes de actividades y prácticas.	de algoritmos de modelado y control	Criterios de fondo: Que el alumno sea capaz de identificar		Ponderación
Objetivo: Crea un compendio de implementaciones de algoritmos de modelado y control y sus reportes de aplicaciones con el fin de reconocer los algoritmos que resuelven problemas de control de forma más precisa y/o eficiente Caracterización Integración de reporte de proyecto con los resultados obtenidos en las actividades del 1 y 2		claramente el tipo de problemas de control de orientación y pose de un robot para los cuales tienen capacidades adecuadas de solución, la complejidad computación, el tiempo de procesamiento, capacidad de convergencia comparando las diferentes técnicas de control. Criterios de forma:		50%

Los reportes de actividades y del proyecto
final deberán contener título del reporte,
respuestas a preguntas específicas del
formato de la actividad correspondiente y
bibliografía en caso de haber consultado
fuentes alternas a las recomendadas. Y
deberán de entregarse de acuerdo a lo
establecido en el formato de la actividad
correspondiente

Otros criterios				
Criterio	Descripción	Ponderación		
Exposición	Presentación oral y escrita de ejemplos de aplicación de algoritmos de modelado y control a problemas de la vida real	10%		

6. REFERENCIAS Y APOYOS						
		Reference	ias bibliográfic	as		
		Refer	encias básicas			
Autor (Apellido, Nombre)	Año	Título	Editorial	Enlace o bibliotecar virtual donde esté disponible (en su caso)		
Antonio Barrientos, Luis Felipe, Carlos Balaguer, Rafael Aracil	2007	Fundamentos de robótica	McGraw-Hil			
Fernando Torres	2002	Robots y sistemas sensoriales	Pearson Educación			
Mark W. Spong, Seth Hutchinson, and M. Vidyasagar	2006	Robot Modeling and Control	John Wiley & sons, inc.			
		Referencia	as complementaria	as		
Kevin M. Lynch, Frank C. Park	2017	Modern Robotics: Mechanics, Planning, and Control	Cambridge University Press			
Siciliano, B., & Sciavicco, L.	2009	Robotics: modeling, planning and control.	Villani and Oriolo			
	hovos (vic	tens presentaciones hi	 	mendada nara el estudiante)		

Apoyos (videos, presentaciones, bibliografía recomendada para el estudiante)

Unidad temática 1:

Diapositivas y bibliografía recomendada

Unidad temática 2:

Diapositivas y bibliografía recomendada

Unidad temática 3:

Diapositivas y bibliografía recomendada